Animal models of postoperative delirium research

Zhongcong Xie, M.D., Ph.D.
Geriatric Anesthesia Research Unit
Department of Anesthesia, Critical Care and Pain Medicine
Massachusetts General Hospital
Harvard Medical School
October 24, 2014 (Boston)

Why do we need the animal model to study postoperative delirium?

- Mechanistic hypothesis testing:
 - Interaction of Aβ/Tau and neuroinflammation.
- Vulnerable window assessment:
 - Age dependent?
- Are there less provocative anesthetic:
 - Isoflurane versus desflurane.
- Potential treatment and prevention:
 - Anti-Aβ, anti-Tau and anti-inflammation.

Animal studies of delirium

- There are few animal models available to study delirium at the present time.
- It is important to establish animal models of delirium.
- We then can determine whether the perioperative factors (e.g., anesthesia, surgery, pain, and sleep deprivation, which could contribute to POCD) can also contribute to the postoperative delirium.

T-maze alternation: working memory

Dr. Colm Cunningham

- Mice will escape from shallow water.
- It needs training period (10 trails).
- It assesses working memory in rodents.

(Murray et al., Neurobiology of Aging, 2012)
Animal studies of delirium

- We have set out to observe several animal nature behaviors following the treatment of scopolamine and following the abdominal surgery under isoflurane anesthesia.

- The ultimate goal is to develop a method of ”CAM in mice”

“Cam in mice”

- Acute onset and fluctuating course:
 - Timecourse studies.

- Inattention
 - Attention deficit assessment.

- Disorganized thinking
 - Freezing behavior and others.

- Altered level of consciousness
 - Open field test and others.

Nature behavioral observation

- Attention level (Millecamp et al., 2004).

- Freezing episodes.

- Open field tests.

- Timecourse investigation.

Attention level

\[\text{Attention level} = \frac{\text{Duration of the new object exploration}}{\text{Total duration of all cumulated objects exploration (i.e. 3 familiar + the new one)}} \times 100 \]

(Millecamps et al., 2004)

Freezing episodes

- Definition: No movement except respiration.

- Detected and analyzed by Any-Maze (Stoelting, Wood Dale, IL).
Open field test

- Definition: The time spent in the zone near the wall during the open field test.
- Detected and analyzed by Any-Maze (Stoelting, Wood Dale, IL).

Scopolamine in mice

Anesthesia and surgery in mice
Effects of Anesthesia and Surgery on mice “CAM”

<table>
<thead>
<tr>
<th>Scopolamine</th>
<th>Anesthesia & Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-8-month mice</td>
<td>18-month mice</td>
</tr>
<tr>
<td>30 min</td>
<td>12h</td>
</tr>
<tr>
<td>Near the wall</td>
<td>↑</td>
</tr>
<tr>
<td>Attention level</td>
<td>↓</td>
</tr>
<tr>
<td>Freezing episode</td>
<td>↓</td>
</tr>
</tbody>
</table>

*↑ and ↓ indicate significant increase (P < 0.05) and decrease (P <0.05) compared with saline or sham group at the same time point, respectively.

Animal models of perioperative factors

Animal: Rats.
Anesthesia: 1.2% isoflurane, 70% nitrous oxide, and 30% oxygen for two hours.
Cognitive function determination: 12-arm radial maze.

(Culley et al., Anesthesiology, 2004)

General anesthesia

Animal: Mice.
Anesthesia: Halothane (0.8–1%) or isoflurane (0.9–1%) in 30% oxygen, balanced by N2 for two hours.
Cognitive function determination: Morris Water Maze.

(Bianchi et al., Neurobiology of Aging, 2008)
Animal: Mice.
Anesthesia: 1.4% isoflurane for two hours.
Cognitive function determination: Fear conditioning system.

(Fianchi et al., Neurobiology of Aging, 2008)
(Zhang et al., Annals of Neurology, 2012)
Animal: Rats.

Surgery: Splenectomy.

Anesthesia: Fentanyl and droperidol (i.p.).

Cognitive function determination: Y-Maze.

(Wan et al., Anesthesiology, 2007)

Animal: Mice.

Surgery: Hepatectomy.

Anesthesia: Chlora hydrate (i.p.).

Cognitive function determination: Morris Water Maze.

(Wan et al., Critical Care Medicine, 2010)

Animal: Mice.

Surgery: Incisional or chemical pain.

Anesthesia: local injection of bupivacaine.

Analgiesia: EMLA (local anesthetics).

Cognitive function determination: Fear conditioning system and Morris Water Maze.

(Zhang et al., Journal of Neuroscience, 2013)

(Terrando et al., PNAS, 2010)

Surgery plus local anesthesia

Animal: Mice.

Surgery: Opening and closing abdomen.

Anesthesia: local injection of bupivacaine.

Analgesia: EMLA (local anesthetics).

Cognitive function determination: Fear conditioning system.

(Xu et al., Scientific Reports, 2014)

(Xu et al., PLoS One, 2014)

Pain

Animal: Mice.

Surgery: Incisional or chemical pain.

Cognitive function determination: Fear conditioning system.

(Yang et al., Anesthesia and Analgesia, 2014)
Sleep deprivation

Animal: Mice.

No sleep for 24 hours.

Cognitive function determination: Fear conditioning system.

(Zhu et al., Neurobiology of Disease, 2012)

Summary and Conclusion

- The employment of several animal models has suggested that perioperative factors, e.g., anesthesia, surgery, pain and sleep deprivation, may contribute to the cognitive impairment in rodents.

- Whether these perioperative factors can contribute to postoperative delirium remains largely to be investigated.

- Thus, it is important to establish animal models of postoperative delirium.

Acknowledgements

Current:
Yuanlin Dong
Yijing (Laura) Zhang
Long Fan
Fang Fang
Lining Huang
Cheng Li
Wankun Chen
Gulyun Cui
Xiaomin Xu
Guangyi Zhao
Jeffery Zimering
Lauren Schroeder
Arther Wang
Celeste Swain

Collaborators:
Harvard:
Rudolph E. Tanzi
Gregory Crosby
Deborah Culley
Edward Marcantonio
Keith Johnson

Capital Medical University, Beijing:
Tianzuo Li
Yun Yue
Ming Tian

Tongji University, Shanghai:
Yuan Shen

Supports:
NIH R01 GM088801
NIH R01 AG041274
Investigator-Initiated Research Grant from Alzheimer’s Association

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital